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Change of Rate Determining Step Induced by the gem-Dimethyl Effect
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The base-catalysed cyclisation to the hydantoin of 2,2,3-trimethyl-5-phenylhydantoate (2; R* = R2 =
Me) is slower than that of the 2,3-dimethyl compound, even though the acceleration expected from
the gem-dimethyl effect is observed for the acid-catalysed reaction.

We have used the introduction of a pair of methyl groups to 4
drive the remarkable cyclisation of 2,2,3,5-tetramethyl hydanto-
ate* (1), which involves general acid catalysed attack on the
CO, " group by the ureido anion.! This is an example of the
gem-dialkyl or Thorpe-Ingold effect,? known to favour
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We report a striking exception to this rule. Figure 1 shows PH
pH-rate profiles for the cyclisation of three hydantoate esters (2; ~ Figure 1. pH-rate profiles for the cyclisation of (2; R' = R* = H)
R' = R? = H; R! = H, R? = Me; R! = R? = Me), with one (squares), 2 l}‘ = H., R.2 = Me) (triangles) and (2; R' = R? = Me)
or two methyl groups at the 2-position. In the acid-catalysed (circles), at 25 °C and ionic strength 1.0m.
region below pH 2 the introduction of one and two methyl
groups increases ky- by factors of 30 and 1 100. But the picture A
is quite different for the base-catalysed reaction. koy For (2;
R! = H,R? = Me)isonly 13timesfasterthanfor(2;R! = R? =
H), and the introduction of the second methyl group actually 57 A A
slows the reaction: kg for the gem-dimethyl compound is six
times smaller than for (2; R' = H, R? = Me).

0 (o]

@
R1 0 R1 | s\ 2 /
R “oet R2 O

(2) (3) 11

o
&
Ji§ Y 2 .
MeN  NHPh MeN NPh 8 /
X

Since the thermodynamic gem-dimethyl effect on cyclisation
should be the same for both acid and base-catalysed reactions, g
this is evidence for a specific retardation of the base-catalysed
reaction of (2 Rf = R? = Me). The mechanism of the base- 0 0_'1 0?2 0'.3 OTL 075
catalysed cyclisation of N-phenylhydantoate esters is generally
agreed>> to involve rate determining spontaneous breakdown (Total buffer]
of the tetrahedral intermediate T~ (Scheme). In contrast to the Figure 2. Buffer catalysis (50% free base acetate at 25°C and ionic
reaction at low pH, no buffer catalysis is observed for the base-  strength 1.0m) for the cyclisation of (2 R! = R? = Me) (circles), and its
absence for the reactions of (2; R! = R? = H) (squares) and (2; R! =
* 2-(1,3-Dimethylureido)-2-methylpropionate. H, R? = Me) (triangles).
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catalysed cyclisation of N-phenylhydantoate esters,® or of the
hydrolysis of the hydantoins produced.** We have confirmed
this result for (2; R' = R? = H); and (2; R' = H, R? = Me);
but the cyclisation of (2; R = R? = Me) shows strong buffer
catalysis over the whole pH-range. These results are illustrated
in Figure 2 for reactions in acetate buffer.

The clear conclusion is that the rate determining transition
state is different for the cyclisation of (2; R' = R? = Me). The
only reasonable alternative transition state (Scheme) is that for
the base-catalysed formation of T, so we conclude that this
step is rate determining for the cyclisation of (2; R' = R* =
Me) [In principle, the breakdown of T~ (Scheme) should
become cleanly rate determining for the cyclisation of (2; R! =
R% = Me) also at sufficiently high buffer concentration, but
this is not achievable under our experimental conditions.]
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Evidently the loss of EtO ™~ from T~ is now faster than ring
opening. One reason could be an accelerated elimination of
EtO~ from the fully substituted T~ (R! = R2 = Me, R3 =
Ph), but steric acceleration of this sort will act to some extent
on both modes of decomposition of T ™. It seems certain that a
major factor is a reduction in the rate of C-N cleavage, caused
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by the gem-dimethyl effect, working in reverse to disfavour the
ring-opening. (Similar effects have been identified recently for
the ring-opening reactions of dihydrouracils® and cyclo-
propanes,’ and seem likely to be general.) However, a change of
rate determining step is not in itself sufficient to explain why the
base-catalysed cyclisation of (2; R! = R? = Me) is actually
slower than that of (2; R! = H, R? = Me), and this problem is
under active investigation.
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